cos(\(\frac{√3}{2}\))
  • \(\frac{5π}{6}\)
  • \(\frac{π}{6}\)
  • \(\frac{4π}{9}\)
  • \(\frac{2π}{3}\)
cosec(2)
  • \(\frac{π}{6}\)
  • \(\frac{2π}{3}\)
  • \(\frac{5π}{6}\)
  • 0
sec(2)
  • \(\frac{π}{6}\)
  • \(\frac{π}{3}\)
  • \(\frac{2π}{3}\)
  • \(\frac{5π}{6}\)
tan(√3)
  • \(\frac{π}{6}\)
  • \(\frac{π}{3}\)
  • \(\frac{2π}{3}\)
  • \(\frac{5π}{6}\)
cot(-√3)
  • \(\frac{5π}{6}\)
  • \(\frac{π}{3}\)
  • \(\frac{π}{2}\)
  • \(\frac{π}{4}\)
tan+ cos(\(\frac{-1}{2}\)) + sin(\(\frac{-1}{2}\))
  • \(\frac{2π}{3}\)
  • \(\frac{3π}{4}\)
  • \(\frac{π}{2}\)
tan(√3) + sec(-2) – cosec(\(\frac{2}{√3}\))
  • \(\frac{5π}{6}\)
  • \(\frac{2π}{3}\)
  • \(\frac{π}{3}\)
  • 0
cos(\(\frac{-1}{2}\)) + 2sin(\(\frac{-1}{2}\))
  • \(\frac{π}{3}\)
  • \(\frac{2π}{3}\)
  • \(\frac{3π}{4}\)
  • \(\frac{5π}{8}\)
If cot(\(\sqrt{cosα}\)) – tan(\(\sqrt{cosα}\)) = x then sin x is equal to
  • tan² (\(\frac{α}{2}\))
  • cot² (\(\frac{α}{2}\))
  • tan α
  • cot (\(\frac{α}{2}\))
If 6 sin(x² – 6x + 8.5) = π, then x is equal to
  • 1
  • 2
  • 3
  • 8
The domain of the following f(x) = \(\sqrt{sin^{-1}x}\) is
  • [0, 1]
  • [-1, 1]
  • [-1, 0]
  • [0, 0]
0 h : 0 m : 1 s

Answered Not Answered Not Visited Correct : 0 Incorrect : 0