Q.1
##### Expression for input impedance of a transmission line in terms of load impedance and characteristic impedance is:
• a) Z0 (ZL+j Z0tan βl)/ (Z0+j ZLtan βl)
• b) (Z0+j ZLtan βl)/ (ZL+j Z0tan βl)
• c) Z0 (ZL-j Z0tan βl)/ (Z0-j ZLtan βl)
• d) (Z0-j ZLtan βl)/ (ZL-j Z0tan βl)
Q.2
##### Input impedance of a short circuited transmission line is :
• a) -jZ0tanβl
• b) jZ0tanβl
• c) jZ0cotβl
• d) – jZ0cotβl
Q.3
##### Input impedance of a transmission line can be represented in terms of this simple trigonometry function.
• a) sine function
• b) cosine function
• c) cotangent function
• d) tangent function
Q.4
• a) -j100Ω
• b) 50Ω
• c) 86.60Ω
• d) –j86.60Ω
Q.5
• a) -jZ0tanβl
• b) jZ0tanβl
• c) jZ0cotβl
• d) -jZ0cotβl
Q.6
##### Input impedance of a open circuited transmission line is represented using this trigonometric function:
• a) sine function
• b) cosine function
• c) cotangent function
• d) tangent function
Q.7
##### For a λ/transmission line, if the characteristic impedance of the line isΩ and the terminated with a load ofΩ, then its input impedance is:
• a) 100Ω
• b) 50Ω
• c) 88.86Ω
• d) none of the mentioned
Q.8
• a) j28.86Ω
• b) 50Ω
• c) j50Ω
• d) 28.86Ω
Q.9
##### Expression for a transmission co-efficient of a transmission line is :
• a) 2ZL/ ( ZL+Z0)
• b) (ZL-Z0)/ (ZL+Z0)
• c) 2Z0/( ZL+Z0)
• d) (ZL+Z0)/ (ZL-Z0)
Q.10
• a) 0.4
• b) 1.4
• c) 0.8
• d) 2.8
Q.11
• a) 0.8
• b) 0.6
• c) 0.4
• d) 0.3
Q.12
• a) -2.922dB
• b) 29dB
• c) 1.46dB
• d) -29dB
Q.13
##### The relation between nepers and decibels is:
• a) 1 Np= 8.686 dB
• b) 1 dB=8.868 dB
• c) Np≥dB
• d) dB≥Np